Product Environmental Profile

Master cabinet

Control command cabinet

Socomec is member of:

Member of de WEEE Europe

Socomec is committed to:

• Incorporate the principles of the

- circular economy into the design of new products and services
- Promote longer product lifetimes

As part of its environmental policy,

The commitments of Socomec to respect the

environment

- Promote the use of environmentally responsible materials
- Design and develop solutions to further improve the energy efficiency of our products and services
- Inform our customers in a transparent manner about the environmental impact of our products throughout their life cycle.

To this end, Socomec is committed to constantly monitoring, anticipating and complying with environmental regulations as well as customer expectations relating to its products, and to ensuring that all those involved adhere to and take responsibility for its commitments.

PEP ecopassport® Registration number: SOCO-00061-V01.01-EN

SOCOMEC S.A.S

Head office: 1, rue de Westhouse – F – B.P.60010 – 67235 Benfeld Cedex

Tél : 03 88 57 41 41 – Fax : 03 88 57 78 78 – www.socomec.com Contact : http://www.socomec.com/contact-us_en.html

• Product information :

Reference product

The representative product is the Master cabinet with sales reference 7423106A0000000 with the following description: Control command cabinet

References covered by this PEP:

7423106A0000000 Master cabinet

Functional unit

To ensure the control of the whole energy storage system while ensuring auxiliaries supply up to 85kW for a service life of 10 years.

Materials and substances

Declaration of the constitutives materials according to IEC 62474

Total mass of the reference product (including packaging): 426 kg among which packaging: 125 kg

For the Master cabinet

I OI LIIC Master Cabillet					
Metals	% weight	Plastics	%weight	Others	% weight
Aluminium and its alloys	29,3%	Others thermoplastics	4,9%	Other organics	27,7%
Other ferrous alloys - non stainless steels	17,1%	PVC	1,5%	Other inorganics	2,0%
Copper and its alloys	8,8%	Other plastics	1,0%	Ceramics and glass	0,6%
Other non-ferrous metals and alloys	6,7%				
Zinc and its alloys	0,1%				
Stainless steel	<0,1%				
Nickel and its alloys	<0,1%				
Precious metals	<0,1%				
Magnesium and its alloys	<0,1%				

Substances management

Socomec is leading a program to limit the use of hazardous substances in the design of new products and to monitor the presence of substances of concern in its supplies to anticipate future use restrictions.

Directive 2011/65/EU: Product references covered by this PEP meet the requirements of the RoHS Directive on the restriction of substances such as lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyl (PBB), polybrominated diphenyl ethers (PBDEs) and phthalates (DIBP, DEHP, BBP, DBP).

As per article 33 or REACh, we declare SVHC's contained in the product:

7 to por article de of the toni, we decide out the contained in the product.								
	SVHC	CAS number	Inclusion date in candidate list	SVHC included in annex XIV (autorisation list)				
	Lead	7439-92-1	June 27th 2018	No				

REACH 1907/2006 regulation: To the best of our knowledge, based on the supplier declarations, at the publication date of this document, the product do not contain any other SVHC in a concentration above 0,1% per weight.

Manufacturing

The products covered by this PEP are manufactured on the production site of Huttenheim, France whose environmental management system has been ISO 14001 certified. Impacts on the environment are reduced by optimizing its energy consumption and by practicing a rigorous waste management.

Distribution

As part of its distribution policy aiming to respect the environment, Socomec is in favor of groupage transports and ISO 14001 certified logistic partners.

No reconditionning is planned for the product. This phase is consequently neglected.

The sizing of the packaging has been optimized to ensure the best possible protection of the product at the lowest possible volume in order to reduce the impact of the transport stage on the environment.

Installation

The installation stage consists in connecting the product to the existing electrical installation.

The installation does not generate any significant impacts on the environment, except impacts from packaging waste.

• Use phase

Consumption scenario

Use phase scenario: European energy mix

Mode	Power consumption of the reference product (W)	Load rate (%)	Time distribution (%)
Active	2678	100	100

Product power consumption during its total lifespan (10 years): 234593 kWh

Care and maintenance

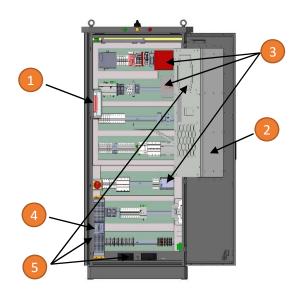
It is recommended to carry out periodic specialized maintenance in order to keep the equipment at the maximum level of efficiency and to avoid the installation being out of service with possible damage/risks.

Components	Power supply	UPS
Maintenance frequency	1	3

For the HVAC a loss of 10% of refrigerant (R-134a) per year has been modelised.

Consumables

The product does not require consumables.



• End of life

End of life treatment

The following parts require specific care and selective treatment in accordance with Annex VII of the WEEE Directive 2012/19/EU - Waste of electrical and electronic equipment. Maintenance and disassembly should always be conducted by qualified personnel.

Item	Part mass	Location
LCD SCREEN	4.05 kg	1
HVAC	36 kg	2
PCBA	7.32 kg	3
LEAD BATTERY	10 kg	4
FANS	3.6 kg	5

Recovery potential of the product according to IEC TR 62635

The recovery potential of the product is 84,1%.

This covers material and energy recovery potentials.

• Environmental impacts

Calculation methodology: life cycle assessment (LCA)

The calculation of the impacts on the environment was made using a life cycle assessment methodology in accordance with the ISO 14040 requirements and with PEP eco passport product category rules. For more details follow the link:

www.pep-ecopassport.org

This study was carried out with the following version of the software EIME and of the database:

EIME version: EIME© v5.9.4

Database version: CODDE-2022-01

The whole life cycle has been taken into account:

Step	Geographical representativeness	Scenario			
Manufacturing	Production of electronic components : Asia Production of other components and packaging : Asia Assembly : France	From the raw material extraction to the last Socomec logistic platform, including packaging Waste generated during manufacturing phase are taken into account.			
Distribution (D) (A4)	Distribution scenario : Europe	From the last Socomec logistic platform to the final customer. No reconditionning.			

Installation (I) (A5)		Local road transport of 1000 km of generated wastes to the treatment site, end of life treatment.
Use phase (U) (B1-B7)	I E NETOV MIX : E I I ONE	Power consumption required during 10 years and maintenance according to consumption scenario above mentionned.
End of life (EOL) (C1-C4)	Transport and treatment : Local	Road transport of 1000 km from the final customer to the treatment sites. End of life treatment.

Environmental impacts of the Master cabinet

The following impacts have been calculated to best represent geographically, temporally and technologically each step of the life cycle.

Indicators	Unit	Total impact	M (A1-A3)	D (A4)	I (A5)	U (B1-B7)	EOL (C1-C4)
Resource use, minerals and metals (Abiotic resource depletion – Elements)	kg Sb eq.	5,69E-01	3,61E-01	0*	0*	2,08E-01	0*
Resource use, fossils (Abiotic resource depletion – Fossil fuels)	MJ	2,09E+06	7,06E+04	3,14E+03	3,35E+02	2,02E+06	7,30E+02
Acidification	mol H+ eq.	6,10E+02	4,25E+01	1,43E+00	1,94E-01	5,66E+02	3,38E-01
Ecotoxicity, freshwater	CTUe	9,43E+05	2,72E+05	1,52E+02	0*	6,70E+05	2,22E+02
Human toxicity, cancer	CTUh	4,98E-03	4,94E-03	0*	0*	4,55E-05	0*
Human toxicity, non-cancer	CTUh	9,77E-04	2,28E-04	4,29E-07	3,13E-07	7,49E-04	1,46E-07
Eutrophication, freshwater	kg P eq.	3,83E-02	1,94E-02	8,45E-05	1,02E-03	1,31E-02	4,73E-03
Eutrophication, marine	kg N eq.	8,10E+01	4,44E+00	6,69E-01	8,79E-02	7,56E+01	1,51E-01
Eutrophication, terrestrial	mol N eq.	8,80E+02	4,85E+01	7,34E+00	9,01E-01	8,22E+02	1,61E+00
Climate change - total	kg CO2 éq.	1,33E+05	4,09E+03	2,26E+02	2,52E+02	1,29E+05	5,86E+01
Climate change - fossil	kg CO2 éq.	1,06E+04	2,82E+02	0*	0*	1,03E+04	0*
Climate change - biogenic	kg CO2 éq.	1,23E+05	3,80E+03	2,26E+02	2,52E+02	1,18E+05	5,86E+01
Climate change - land use and land transformation	kg CO2 éq.	2,89E-05	2,19E-05	0*	0*	6,98E-06	0*
lonising radiation, human health	kBq U235 eq.	1,61E+05	1,10E+05	0*	0*	5,09E+04	0*
Land use	No dimension	3,38E+04	3,20E+01	0*	0*	3,38E+04	0*
Ozone depletion	kg CFC-11 éq.	4,75E-03	6,35E-04	0*	0*	4,11E-03	0*
Particulate matter	disease occurrence	6,42E-03	2,97E-04	1,16E-05	1,30E-06	6,11E-03	2,64E-06
Photochemical ozone formation, human health	kg NMVOC eq.	2,52E+02	1,56E+01	1,85E+00	2,89E-01	2,33E+02	4,13E-01
Water use	m³ eq.	-2,86E+04	-6,39E+04	0*	0*	0*	0*
Use of renewable primary energy excluding renewable primary energy used as raw material	MJ	2,92E+05	3,70E+02	0*	0*	2,92E+05	0*
Use of renewable primary energy resources used as raw material	ΜJ	2,81E+03	2,81E+03	0*	0*	0*	0*
Total use of renewable primary energy resources	MJ	2,95E+05	3,18E+03	0*	0*	2,92E+05	0*
Use of non renewable primary energy excluding non renewable primary energy used as raw material	ΜJ	2,09E+06	6,90E+04	3,14E+03	3,35E+02	2,02E+06	7,30E+02
Use of non renewable primary energy resources used as raw material	MJ	1,89E+03	1,66E+03	0*	0*	2,32E+02	0*
Total use of non-renewable primary energy resources	MJ	2,09E+06	7,06E+04	3,14E+03	3,35E+02	2,02E+06	7,30E+02
Use of secondary material	kg	3,35E+00	3,08E+00	0*	0*	2,66E-01	0*
Use of renewable secondary fuels	MJ	0,00E+00	0*	0*	0*	0*	0*
Use of non renewable secondary fuels	MJ	0,00E+00	0*	0*	0*	0*	0*
Total Primary Energy	MJ	2,39E+06	7,38E+04	3,15E+03	3,39E+02	2,31E+06	7,36E+02
Net use of freshwater	m³	-6,66E+02	-1,49E+03	0*	0*	0*	0*
Hazardous waste disposed	kg	9,83E+03	8,87E+03	0*	0*	9,57E+02	0*
Non hazardous waste disposed	kg	4,35E+05	5,57E+03	0*	1,40E+02	4,29E+05	3,21E+02
Radioactive waste disposed	kg	2,91E+02	4,45E+00	0*	0*	2,87E+02	0*
Components for reuse	kg	0,00E+00	0*	0*	0*	0*	0*

Materials for recycling	kg	9,09E-03	9,09E-03	0*	0*	0*	0*
Materials for energy recovery	MJ	1,37E-07	4,08E-08	0*	0*	9,66E-08	0*
Exported Energy	MJ by energy vector	1,55E+02	4,66E+01	0*	1,09E+02	0*	0*

Biogenic carbon content in the reference product:

Biogenic carbon content of the product	kg of C	0,00E+00	0*	N/A	N/A	N/A	N/A
Biogenic carbon content of the associated packaging	kg of C	4,94E+01	4,94E+01	N/A	N/A	N/A	N/A

NB: 0* means that this impact either represents less than 0.01% of the total life cycle of the reference flow, or has no impact (in the case where the total impact is zero).

Registration number : SOCO-00061-V01.01-EN			Drafting Rules : "PEP-PCR-ed4-EN 2021	09 06"			
Verifier accreditation number : VH12			Information and reference documents : www.pep-ecopassport.org				
Date of issue:	01/03/2022		Validity period : 5 years				
Independant verification of the decl	aration and data,	in compliand	e with ISO 14025 : 2006				
Internal :	abla	External :		PEP			
The PCR review was conducted by PEPs are compliant with XP C08-1		Í	,	PASS			
The components of the present PE	PORT _®						
Document complies with ISO 1402	5:2006 "Environn	nental labels	and declarations. Type III environmental d	eclarations"			

This document is intended to be only informative and non-contractual and does not create any right or obligation or commitment for Socomec towards its associates, customers or any other person or entity. All the values indicated in this document may change depending on many factors (use conditions, applications, installations, environment...). The life time mentioned in this document is only indicative and is not intended to be the minimal, maximal or average life time of the product.